
RELEASE 1.0

SAE ATIS GUIDE DOCUMENT

Part IV of IV

A training document developed for the
OET program to teach the ATIS
message set standards

[image: image2.emf]System

#1

System

#2

Looking upstream Looking downstream

Society of Automotive Engineers

400 Commonwealth Drive

Warrendale, PA 15096-0001

This Guide is available for download from the web in four parts at:

http://www.ITSware.net/ATISworkingdrafts/Guide/PartI.doc

http://www.ITSware.net/ATISworkingdrafts/Guide/PartII.doc

http://www.ITSware.net/ATISworkingdrafts/Guide/PartIII.doc

http://www.ITSware.net/ATISworkingdrafts/Guide/PartIV.doc

or as a single ZIP file at:

http://www.ITSware.net/ATISworkingdrafts/Guide/Guide.zip

Current technical support and information exchange about using the ATIS standards in deployment and with other ITS standards can be obtained at the ITS Standard Forum, a community resource available http://serv4.itsware.net/bb/index.php

There is a set of forums dedicated to ATIS related issues at:

http://serv4.itsware.net/bb/index.php?c=3

Chapter Ten 2Testing Guidance

210.1
Introduction

310.2
What is Message Set Testing

610.3
Testing Up and Down the Pipe

1110.4
Specific Examples

1610.5
Maintaining a Baseline in a Deployed System

10 Testing Guidance

10.1
Introduction

This chapter covers various issues associated with content and acceptance testing of an ATIS system. Testing in this context is basically validating that a message follows the structure it is supposed to, with the contents it is supposed to, and any local restrictions to further tailor it for use. It is a demonstrable process that allows two or more parties to agree that this is so. It is a prerequisite, but not a guarantee, of inter-operation. The testing that is addressed here does not consider a number of other issues, such as network capacity and loading, which must also be validated as part of any deployment’s testing.

[Insert a side panel picture of a testing lab showing some statistically determined testing results on a screen if we can ever find a suitable one.]

This chapter starts with an overview and introduction to better explain what testing is and its benefits, followed by three further sections: Considerations of testing from the data supplier versus the data consumer perspectives, and what to do when a problem is found. A short example of testing a specific ATIS message is given, involving both manual inspection and how testing tools can help. Finally, considerations and recommendations for maintaining a testing baseline in a deployed system are covered. [Add a jump to link for each of the three sub sections after each line prior]

Testing is not a one-time event at system acceptance. It is an on-going component of building, integrating and maintaining a deployed system. It represents a significant factor in the overall cost of the program
, but ultimately yields a much greater return. If ignored in the planning stages, the resulting disconnects can imperil the program in its later integration stages leading to delays and cost overruns that historically far exceed what the cost of planning and executing a testing program would be.
 With a strong testing baseline, you are much better prepared to incrementally update and replace components of your deployment, add new features and users, and exchange data with others, as time goes on.

Adopt the mindset that testing and validation as a whole is a mandatory part of building any system - and its associated components. Require from your suppliers detailed participation in this process, including resolution of issues across vendor boundaries (which is where most problems arise) as a mandatory aspect of the job. Do not allow finger pointing between suppliers to become an intractable issue, that is why you have a prime contractor. At the same time, recognize that no bid, no standard, and no operations concept document is in fact perfect or clear in all respects. Be prepared when differences in interpretation do come up to make judgment calls to get the results you need in your system, and then to document them. When such a call involves the standards themselves, use the resources of the FHWA field offices, the OET program, and the standards developing committees to get a quick read on how to proceed. By this extra step you may well learn that an answer already exists, or that a proposed solution is being advanced in the committee process already.
 Knowing such information can eliminate another source of risk to the longevity of your deployment investment.

10.2
What is Message Set Testing

Testing a message set in working systems consists of inspecting the presented messages for its structural formats, and for the internal contents of each structural element. This occurs by comparing a sequence of presented messages to known rules of content and order. It may range from a process of manual inspection to one of the complete automation. Compared to some subjective things you may wish to test, message set testing is almost entirely definitive, in that the message under test either does or does not meet the testing criteria. The message set standards, and the data elements that make them up, become the point of reference to which a message is tested. This is further refined by the transport layer or encoding that may be in use (XML, ASN-OET, others) and by any local content conventions which have been adopted (such as restricting the use of terms like “danger” in descriptive phrases). Finally, the message may be presented in some form of dialog or system environment (such as a web location, or SOAP for XML, or the C2C Datex or CORBA environments). While the core subject of this chapter is validating the messages by testing, these other two factors (transport encoding, and the system environment) often also need testing to validate that they do not harm the message and that they deliver it intact as expected. Often these factors are tested in an “onion skin” manner proceeding to the inner testing of the messages once the other issues are satisfactorily established as working. Along the way, other issues not considered here must typically also be validated in some way. These include testing the overall system robustness and throughput rates under a variety of stress conditions to ensure it will perform as expected.
 The results of performing such tests are a more complete understanding where the system meets various standards (and where it may not,) which allows you to uncover errors you may need to resolve, and to know your own system baseline in order to manage the integration process and further change it with confidence.

A reasonable question to ask at this point is, why test at all? The short answer is, so you know it works. The longer answer is that when it does not work, you know what to blame – and perhaps what to do about it. What you learn from the testing process cuts both ways, giving benefits and possible problems to both the data provider and the data consumer. This, then, impacts acceptance testing and integration among your suppliers, your primary contractors, and often various agencies which are responsible for providing or using the data. If your data is used in any sort of data merging or data fusion by any party, then successfully integrating the data with other sources is nearly impossible without strict adherence to the message set standards. Good data, from a validated good source, lets the data consumer relax his quality checking (as a considerable saving of real processing time), and be confident that it can be merged with other data as required. This allows the data consumer to concentrate improvement dollars on what the data is used for, rather than endless parser variants to handle local exceptions. A data consumer who is known to accept valid data, means the data producer need not be as concerned about real time bottleneck, or that the mission of the data will be impacted by formatting issues. Improvements in diversity of content and coverage area can then result from a confidence that the core methods of expression are correct. Given a proven system made up of components of this nature, others elements (other centers, other data providers, other data consumers – and all free to use other vendors) can join in the creation and dissemination of data in your region without a need for refitting the existing deployment, and with very little integration cost and effort. In other words, adding the local arterial streets and surrounding communities to your regional deployment will be very inexpensive to do.

When a change in the actual baseline occurs (for example, you implement a new update to a specific standard), then the previously-established test baselines give the system a fixed point from which to launch off to testing the new features, as well as a safe harbor to retreat to if all the components in your deployment cannot be upgraded at that same time (which is often the case). Because revisions to the standard are predominantly evolutionary (rather than revolutionary) in nature, you can control the process of moving from "Revision X" to "Revision Y" by understanding what the new revision will entail. Most planned revisions to the ATIS standard deal with further new messages and new message content in existing messages to support an ever wider set of usage needs.
 When content of this type is the basis for the revisions, the testing process (again profiled to local conditions) is simply repeated on the new contents. Many changes which simply add new data elements to a message, are transparent to existing users of the data if their systems are constructed properly.
 In other cases a content format is chosen that obsoletes a prior convention.
 This can be more difficult to manage as a configuration baseline as the new format is incompatible with the old and a binary decision across the deployment must be made. In most of these cases, a "clean" way to reformat the message set from the former way can be implemented, which allows some automated translation to occur.
 Thankfully, ATIS data is not often engaged in tightly coupled command and control in most instances. In such a system, the issues are much harder to deal with.

The decision to drop one way for another is always painful and there are no answers that satisfy all constituents. In an ideal world, the data is issued in both formats for a period of time before a well-published final date when the older message format is removed. Those implementing a web page-based system are often at a slight advantage here in that they can simply publish duplicate pages, and let the migration from one format to the other occur among the data consumers without explicit coordination with the data suppliers.
 In any event, widely making your upgrade plans known among the data community is the key to success in this area.

Often a local user of a standard finds a need to extend or modify the standard in order to meet local requirements. There is a number of good ways to go about this and there are definitely bad ways to do it. This is referred to as profiling the message set standards when a further limiting of all the possible formats is chosen.
 It is referred to as extending when something new has to be added to the message set.
 Sometimes this is problematic, especially when the method chosen to expand and add a feature is in conflict with other proposed changes, or is used expressly to circumvent the features of the standard itself. Ken Vaughn (Trevilion Corp) and Don Creighton (Battelle) have coined the phrases "benign" and "malignant" to further characterize such extensions along interoperational criteria.
 A trivial example of a benign message might provide a combined set of thumbnail camera images along a commuter corridor – a perfectly valid message which has no existing analogy in the current standards. In this sense, a benign extension would achieve a high degree of inter-operation and malignant extension would not. The most grievous of these errors would be to use ability to add a new message to avoid using standard message sets designed to do the same thing. Again deployments and their designers are urged to consult with the various OET resources to see if the extensions they contemplate have already been solved previously and what the impact of the solution is.

Regardless of what is added to the messages, it too must be tested. Presuming the additions follow the same form and structure as the standard messages, then content testing can often be performed by the same tools with little additional work. If the extension or profiles involve adding or restricting list items, this can be readily changed in most testing environments. If new message elements are wanted, the tail structures allow a means to construct them and control their formats and placement. Testing of valid content would then have to be developed on a case-by-case basis. Adding entirely new messages, especially those that are not connected to dialogs, will need to be tested in the same ways other messages are tested.
 Messages connected to other messages, such as a request and reply dialog, will need further testing to be sure the correct stimulus and response occurs. In any event, the new message needs to be testable in a clear and concise way, and you need to consider what may happen when this message/content is presented to a user outside the regional deployments and how he will react. The key burden on you when you create a new message is to provide sufficient guidance on how it is used to avoid uncertainty issues in implementing it. Look at the message in the standard for an example of what is expected. This rule is in general true, but here the focus is on giving testing guidance. The tools being used in your test suite may provide methods to add a new message. At the very least, provide a number of correctly-formatted, manually-created examples of messages for preliminary use. The transmission environment (XML, etc...) may allow you to define the structural content rules as well. Do not fall into a sense of false security that by rigorously testing all the other messages you can "let this one go" – inevitably the new untested message will be the cause of more errors and issues than the other messages which have had the benefit of much greater reviews already.

One last word on testing in general: when is enough really enough? When you are confident that the testing you are doing is sufficient to exercise the system over its full range and you start to honestly believe that if it has passed the test, that those aspect of the systems must be trustworthy. When you find your self at this point, document how you got here. You will undoubtedly want to return to this point again and again over the life of your program as changes are made.

10.3
Testing Up and Down the Pipe

Consider the flow of information traveling along a pipe for this section. A data producer is at one end and a data consumer at the other. The pipe can be considered a metaphor for the transmission media and the encoding being used, while the message sets are a mutually agreed upon contract regarding how things are structurally formatted. In this analogy, both parties have obligations and expectations that can be verified in operation. The data sender expects to be understood and that the data will not "back-up" in the pipe due to issues of understanding (decoding). The data receiver expects the data to follow these same formats, and expects to never see anything else. The data sender can simulate his part by sending pre established, well-formed messages. The data receiver can process any messages received with a protocol analyzer which tests for the well-formedness of the data rather than using it for some other end.

[image: image1.png]

Most often two different parties are involved in this, one at each end. In practice, both of these processes often start out with simple, manually created messages, examined by manual inspections – just a text editor is often enough to get going. With time, more and more "helper" automation is built-up and added to the process until largely automated processing is occurring, and machines are being employed to filter the data down to a point of relevant information. At this stage, it is not unusual to be able to create and test tens of thousands of messages with only minimal human intervention. A mature industry exists for such tools, and many telecommunications tools can be trained to learn more unusual dialects, such as the ITS industry.
 It is common to develop sets of test suites with sets of both well- and ill-formed messages that, then can be used by interested parties to benchmark their devices before attempting to integrate with others. The specific examples that follow could be used as a starting point for such work.

This breaks testing down into message structure and message (actually element) content. The structure of the message is the order it comes in, and the various ways that ordering is broken up or denoted. The message itself often has an overall enclosing structure, and typically this is where and how it meets with any system level packaging. For example, a web-based system would place one or more ATIS messages into a file like structure and present them as a whole.
 XML-based systems more or less do likewise. Any byte stream orientated connection would have ways to denote the start/stop of a sequence of bytes, while a CORBA IDL could represent any of the above, as well as some partial content updating formats.
 Systems sharing a transmission media with other uses have devised message headers of various types that typically encapsulate the message and direct it the logical link layer it needs to be used in. Most commercial broadcast media follow this format in some way. Almost all of the formatting choices mentioned here are telecommunications industry standards. As a result, tools exist to detect and analyze format issues dealing with this level of testing. Your prime contractor can advise you on how they propose to test and validate at this layer. These are the outer layers of the "onion skin" and while they require testing, they have little unique content to ITS. That part is the message content itself and typically requires much more hands-on contact in the local deployment to test.

What exactly do you use for content and what gets tested? The short answer is to use the full range of legal content so that you fully exercise (stretch if you prefer) the message content. The full range is what the suitable standard allows, plus anything you add (in the proper places)
 and not having anything you prohibit.
 Let's consider two cases further, a simple text string, and the use of ITIS phrases. Your message set testing will follow rules similar to these, repeating it in each element of each message until the entire message is validated or not. The mindless tedium of doing this after a bit of manual inspection is motivation enough for most people to develop automated tools. The end result of this is a suite of test messages, both well- and ill-formed, that can be used down the pipe to confirm and test that others can handle for messages, and up the pipe to compare with the sorts of messages being issued.

Getting back to an element-by-element aspect of testing, consider a text string used in a message such as: SomeText ::= IA5String (SIZE(0..20)) and how you would go about validating content for this item. First, it is obviously a string which can range from zero to no more than twenty characters in length. If you were to send or receive a message with 25 characters in this spot, someone should yell "foul." Less obvious
 is that the character sets which this string is made up of, is an international one called “Latin_1” which has a number of useful characters such as the left/right slanted quotes in this sentence, as well as a number of accent marks unusual to US readers. Many systems still do not support Latin_1 characters, and need to be restricted to ASCII. This might be a restriction you need to impose on your system.
 In either of these choices, there are still non-printing characters such as tab, backspace, or null that may cause problems if they appear in the string.
 In some media encoding rules, certain characters are also restricted, such as "<" and ">" in XML.
 You may wish to restrict the element beyond what the standard demands. In free text the prohibiting of selected words is a common example. The definition allows zero characters as well. Does this mean that nothing is sent, or that empty tags are sent? The answer to this is both, and to some degree depends on if the OPTIONAL keyword is present and the type of encoding used. Reasonable test sequences for this element would include a range of strings to bring out all of these issues. It is not practical to test every conceivable sequence (255 to the 20th power for those that care). Construction of messages on the boundary is what is wanted. If your test environment allows it, when you create such a message to try to document what you hoped to test or catch with each one.
 If your test environment allows sending the wrong type of element (for example an integer versus a string), then use this to create structurally incorrect messages. Some possible values for testing this string might be:

String (between quotes)
Testing Rational

"A"
A one char message

""
A zero length message

"Breakdown"
A simple valid test case

"A longer message.."
Exactly 19 chars

"A longer message..."
Exactly 20 chars

"A longer message...."
Exactly 21 chars, should break it

"A much longer message...."
Well over 20 chars, should break it

"Cock, male chicken"
Possible prohibited word test

"he "said" nothing"
A string with a simple quote within it

"1234567890"
A valid string, but meaningless

"~!@#$%^&*()_+|{}[]<>"
Various valid values

(all in the ASCII range too)

"Aa“Bb”CcÀÁÂÃÄÅÆÇÈ"
Chars from the range above 128

in value (Latin-1)

Consider a sequence of ITIS phrases used to describe some form of an event such as: SomeEvent ::= SEQUENCE ITIScodes(SIZE(1..5)) and how you would go about validating content for this item. We consider the case of only ITIS codes here. More commonly, such codes can be freely mixed with textual characters but here we ignore that use. First, what codes are we using here? The definition says the ITIS codes, but this is a standard itself. What version, the one last issued or a specific one you called out in your design documents?
 Next, it is obviously a set of these phrases
 which can range from one to no more than five of them in length.
 So what we would expect to see is from one to five sets of 16-bit (2 byte) codes in this field. Theoretically, the sender could encode any value from 0x0001 to 0xFFFF and have it work. [In any event, the transport media should be able to handle that range to allow future growth] This test approach would pass a message made up of list items in the reserved local list spaces (typically 128 to 255 in each smaller list) without ever confirming that such a list entry in fact existed. In practical fact, we might want to test each currently defined sub range rather than allow all values. Such a test would produce a stricter testing to adherence to the national standard.

However, such a process only tests what could be allowed. We need to consider what the local deployment also wishes to add or prohibit. Once we have this, we then have a definitive set of possible entries to test for and either pass or prohibit.

Consider the add case further. Suppose it is decided that a local deployment along a wilderness area has determined its wishes to use a new phrase "mountain lions in area" and that this must be added to the list. The complete rules of how to do this are contained in SAE J2540. The rules to extending an XML schema (applicable to deployments using XML) are contained in SAE J2630. Consult these standards for the finer points of list management. Let us presume for the example that it is decided the logical place to add this new item is the first local position in the Obtrusions list, value [5, 128].
 Today (version 1.0 of the list), this list spans values of [5,0] to [5,30] and also [5,126] and [5,127] (as two cancel types
) with national entries. With the new entry, the value [5,128] also becomes valid. Then the ranges of data accepted in this area
 would be from [5,0] to [5,30] and from [5,126] to [5,128]. The test procedure would ideally test for this occurrence as well as items outside the range.

Consider the prohibit case further. Let us presume that a local deployment has decided for whatever reason that no phrases involving animals are to be used.
 This would prohibit the following items:

animal-on-roadway [5,10]

large-animal-on-roadway [5,11]

herd-of-animals-on-roadway [5,12]

animal-struck [5,13]

As just mentioned, this list spans values of [5,0] to [5,30] and also [5,126] and [5,127] with national entries. The entries above come from the middle of the list, and their removal effectively creates three distinct ranges of valid values. The ranges of data accepted would be:

from [5,0]

to [5,9]
and

from [5,14]

to [5,30]
and

from [5,126]
to [5,127].

Again, the test procedure would ideally test for this occurrence as well as items outside the range. And again, this would be actually sent in whatever encoding was used by your system (an integer in OET rules, as a string representing the numeric value in XML, etc.).

Note that prohibiting a list entry in this context means it is never sent by the data issuer, regardless of the wording to be displayed by the end user – the precise definition of which is out of the control of the sender.
 Some local deployments will want to use this strategy, while others may wish to simply provide a rewording of the phrases used and allow local users to download the modified list.

Note that this testing still allows (as does the standard) sequences of ITIS phrases grouped together that make absolutely no sense to either sender or receiver. For example the sequence [32-3], [37-4], [20-11], [18-127], [27-6] would be valid in the above example, but translates to "Left lane, visitors, gusty winds, weather forecast withdrawn, danger of explosion." This is to some degree a failure in the standards in that they control the "words in the sentence" but impose no sentence structure rules. Testing to detect and control this quickly becomes very subjective and historically has not proved useful. A better strategy is to link common sequences of ITIS phrases together in the human interface side of the data creation and employ such user interface tricks to reduce the needs (and hence the change) for human entry of ITIS codes one at a time. Consider combining this with any filtering to detect and block prohibited words in your system.

Another source of potential errors which is not tested by the above, is the subjective misuse of the message elements to hold information that should be more properly formatted into another element. Sometimes where to put things is a matter of opinion, such as the cause/description/advice fields used in the incident messages. At other times a more malignant choice is made. Using the description fields to relate the nature of a set of affected lanes rather than using the lanes structures would be an example of this. When information is placed in an element as free text it becomes very difficult for other users of the data employing automated processing to "dig out" the information from such an encoding. Using free text to express that same information as an ITIS phrase is another such example. Consider things from the perspective of the data user, who may be merging your data with other sources or may be using a machine to sort messages. Your operators training and human interfaces make it difficult, if not impossible, to enter such data.

It should be evident from these two examples that the variations of many elements in many messages can quickly grow quite large. Typically the saving grace is that a fairly small number of data elements are locally tailored but are then used in uniform ways in the messages. Another plus is that messages meeting the national formats (that is, not locally tailored in any way) are available from the SAE web site [add link here] and can be readily created with some of the utility tools introduced in other parts of the training [add link here]. Like many of the examples in this guide, the LRMS portions of the messages are missing in content. You can add LRMS from your own local map and deployment and thereby use these messages as a starting point. Using these tools, or the work of others, you can begin to assemble a suitable mix of test messages.

Select and create messages as such, that you cover all the types you wish to use in your deployment. Gather a wide range of element content to purposefully stretch the message formats. Choice messages that both have and do not have the optional elements you will be using. Remember that one test of a suitable data receiver is that it should be able to accept such optional content, even if you do not plan to issue it from your data source. Use your assembled mix of messages to allow comparisons and testing all along your data pipe. As you build your systems, ensure that you can "lift the hood up" along all the crucial paths and both insert and extract messages for validation. Require some degree of demonstrable compatilbity before you allow new subsystems to be integrated to the main system. Clearly delineate when you are testing the inner portions (the messages themselves) from the outer portions of the encoding media, the transmission media etc. When an error occurs use the validated messages to determine who the responsible party is and what action should be taken to correct things; and, make use of the 3rd party testing tools that exist when possible, to automate the process and gain a richer level of feedback.

10.4
Specific Examples

This section deals with developing some simple but complete examples of test messages. There is somewhat of a basis in creating messages for sending "down the pipe" in the examples. They will be presented in XML encoding (using the encoding rules of SAE J2630) and developing only a few of the many optional elements.
 This collection of messages is expected to grow and readers are urged to check the committee web site, and other resources, for the most complete and up-to-date versions [add link here]. Also, some of the various utility tools created as part of the Outreach, Education and Training (OET) effort can be employed to assist in creating these sorts of messages [add link here].

Let's begin with the now familiar IncidentInformation message
 and its contents:
IncidentInformation ::= SEQUENCE {

 incidentLocation LocationReference,

 incident-Type Incident-Type, -- a range of ITIS codes

 severity Event-IncidentSeverity,

 status Event-IncidentStatus,

 cause SEQUENCE OF ITIS-Codes (SIZE(1..100))

 descripition SEQUENCE OF ITIS-Codes (SIZE(1..100)) OPTIONAL,

 advice SEQUENCE OF ITIS-Codes (SIZE(1..100)) OPTIONAL,

 -- current relevant information in text and codes

 startTime DateTimePair OPTIONAL, -- point this event started

 clearTime DateTimePair OPTIONAL, -- an estimated clear time

 lanesAffected LaneDescription OPTIONAL,

 vehiclesInvolvedCount Event-IncidentVehiclesInvolvedCount OPTIONAL,

 -- the number of vehicles

 vehiclesInvolved Event-IncidentVehiclesInvolved OPTIONAL

 -- the types of vehicles

}

Reducing this to only the mandatory elements, and shortchanging the LRMS portions once again, we have a relatively simple message of:

IncidentInformation ::= SEQUENCE {

 incidentLocation LocationReference,

 incident-Type Incident-Type, -- a range of ITIS codes

 severity Event-IncidentSeverity,

 status Event-IncidentStatus,

 cause SEQUENCE OF ITIS-Codes (SIZE(1..100))

}

If we continue to short change the LRMS portions, this becomes a simple four-element message. Expressed in valid XML one such valid message would be:

<IncidentInformation>

 <incidentLocation> punt
</incidentLocation>

 <incident-Type> Accident </incident-Type>

 <severity> Minor </severity>

 <status> Confirmed-report </status>

 <cause><ITIS> Accident-involving-a-truck </ITIS></cause>

 <!-- code 2-12 -->

</IncidentInformation>
Note that in the above example every element except severity is derived in some way from the ITIS lists. The incident-Type and the status are all specified as sub ranges of the ITIS list, and defined by the TMDD work. The cause is a sequence of ITIS items interspersed with free text as needed. Note the XML comment denoting the code value for this string, a simple way to add comments to your test messages.
Note also, that the order of the elements is defined in the standard and may not be varied. To create an illegal message, simply swap the order of one of the above. Stated another way, the order of the elements in a message must follow the ASN.1 standard and the next element in any message must be either the next optional element (if present) or the next mandatory element, repeating until the end of the message is reached.

Many variations on the above message can be quickly created with a simple test editor as needed. However, to be considered a valid ATIS message, the IncidentInformation message must be enclosed in the normal xxx message to be sent. Recall that this message serves as a sort of envelope allowing multiple related messages to be collected together. You may find it useful to group entire test suites this way in your test plan, based on the wholesale completion of such a message. Should you decide to do so, use the header and tail data structures to document what the message set is intended to test.

Repeating the ResponseType message:

ResponseType ::= CHOICE {

 weather SEQUENCE OF WeatherInformation,

 pollution SEQUENCE OF PollutionInformation,

 traffic SEQUENCE OF TrafficInformation,

 incidents SEQUENCE OF IncidentInformation,

 events SEQUENCE OF EventInformation,

 roads SEQUENCE OF RoadAdditionalInformation,

 flights SEQUENCE OF AirlineTravelInformation,

 wideareatravels SEQUENCE OF WideAreaTravelInformation,

 routes SEQUENCE OF TransitRoute,

 ...

 }

Dropping the unused portions (the other messages which might be sent at the same time) and rendering this into the XML we have the following, where <IncidentInformation> can appear as many times as desired with each occurrence being a new event.
<ResponseType>

<incidents>

<IncidentInformation> </IncidentInformation>

<IncidentInformation> </IncidentInformation>

<IncidentInformation> </IncidentInformation>

</incidents>

</ResponseType>
Adding the various bric-a-brac of XML and inserting the single message produces a complete XML expression as shown below. From a testing point of view, successfully sending this message could be viewed as the ATIS equal of the "Hello World" example for getting a programming environment to successfully work.

<?xml version="1.0" encoding="UTF-8"?>
<ResponseType>

<incidents>

<IncidentInformation>

<incidentLocation> Punt </incidentLocation>

<incident-Type> Accident </incident-Type>

<severity> Minor </severity>

<status> Confirmed-report </status>

<cause> <ITIS> Accident-involving-a-truck </ITIS> </cause>

<!-- code 2-12 -->

</IncidentInformation>

</incidents>
</ResponseType>
If you have an XML editor or have installed Internet Explorer version 5.x or better click [here] to see the above rendered as XML in that editor.

The single message can be replicated multiple times within the structure to produce various test messages. Shown below is a simple example of this, varying only the cause element. Much more complex content variation would be expected in a real test suite. A test file with a fuller example of such messages can be found at [here].
 Some interesting examples of style sheets which can process this, or any similar message meeting the standards, into HTML web pages can be found at [link].

<?xml version="1.0" encoding="UTF-8"?>
<ResponseType>

<incidents>

<IncidentInformation>

<incidentLocation> Punt </incidentLocation>

<incident-Type> Accident </incident-Type>

<severity> Minor </severity>

<status> Confirmed-report </status>

<cause>
<ITIS> Accident-involving-a-truck </ITIS> </cause>

<!-- code 2-12 -->

</IncidentInformation>

<IncidentInformation>

<incidentLocation> Punt </incidentLocation>

<incident-Type> Accident </incident-Type>

<severity> Minor </severity>

<status> Confirmed-report </status>

<cause>
<ITIS> Accident involving a bicycle</ITIS> </cause>

<!-- code 2-7 -->

</IncidentInformation>

<IncidentInformation>

<incidentLocation> Punt </incidentLocation>

<incident-Type> Accident </incident-Type>

<severity> Minor </severity>

<status> Confirmed-report </status>

<cause>
<ITIS> Accident involving hazardous materials

</ITIS> </cause> <!-- code 2-13 -->

</IncidentInformation>

<IncidentInformation>

<incidentLocation> Punt </incidentLocation>

<incident-Type> Accident </incident-Type>

<severity> Minor </severity>

<status> Confirmed-report </status>

<cause>
<ITIS> Spilled-load </ITIS>

<ITIS> traffic-congestion </ITIS></cause>

<!-- codes 2-40 and 1-7 -->

</IncidentInformation>

</incidents>
</ResponseType>
Another very commonly used ATIS message is the LinkTrafficInformation message to relate network traffic conditions and flow rates. The now familiar definition (below) is composed almost entirely of optional elements to allow data senders to select only what they wish to transmit.

LinkTrafficInformation ::= SEQUENCE {

 linkLocation LocationReference,

 link-Delay Link-Delay OPTIONAL,

 link-Capacity Link-Capacity OPTIONAL,

 link-Density Link-Density OPTIONAL,

 link-LanesNumberOpen Link-LanesNumberOpen OPTIONAL,

 link-Occupancy Link-Occupancy OPTIONAL,

 link-Speed Link-Speed OPTIONAL,

 link-Status Link-Status OPTIONAL,

 link-SurfaceCondition Link-SurfaceCondition OPTIONAL,

 link-TravelTime Link-TravelTime OPTIONAL

Taking the optional elements away and reducing this to a basic message for speed map, we have an XML message fragment looking like:

<LinkTrafficInformation>

 <linkLocation> Punt
</linkLocation>

 <link-Speed>
25
</link-Speed>

</LinkTrafficInformation>

The contents of the link speed can be varied from 0 to 255 within any valid message.
 As before, the LRMS portion is skipped in this example but it is paramount that the data issuer and data user coordinate on this point. Bundling several examples of these messages together into a valid XML message produces the data below. Note that travel time was added to one of the entries for variety.

<?xml version="1.0" encoding="UTF-8"?>
<ResponseType>
 <traffic>

<TrafficInformation>

<LinkOrNode>

<LinkTrafficInformation>

<linkLocation>
Punt1
</linkLocation>

<link-Speed>
25
</link-Speed>

</LinkTrafficInformation>

<LinkTrafficInformation>

<linkLocation>
Punt2
</linkLocation>

<link-Speed>
10
</link-Speed>

</LinkTrafficInformation>

<LinkTrafficInformation>

<linkLocation>
Punt3
</linkLocation>

<link-Speed>
123
</link-Speed>

<link-TravelTime> 20
</link-TravelTime>

</LinkTrafficInformation>

<LinkTrafficInformation>

<linkLocation>
Punt4
</linkLocation>

<link-Speed>
0
</link-Speed>

</LinkTrafficInformation>

<LinkTrafficInformation>

<linkLocation>
Punt5
</linkLocation>

<link-Speed>
255
</link-Speed>

</LinkTrafficInformation>

</LinkOrNode>

</TrafficInformation>

</traffic>

</ResponseType>
Click [here] to view this with your computers XML editor. Again, simple text editing tools can used to extend this example to more complex message content.

The examples presented here can be used once a legal LRMS value is stripped in and should present no difficulties to a system meeting the standards. Obvious extensions in content and further messages can be created from these examples using either a text editor or an XML editor. A similar process can be used for other encoding systems. The utility tools developed as part of the OET can also be used to create such messages.

As you are gathering a suitable collection of such messages, consider the order in which you need to test your system. Begin by selecting a relatively simple message which you can use as a test case while validating the media and encoding aspects of your system. In some file and web-based systems this step is fairly trivial, but in others (such as a CORBA deployment) getting the various pieces to simply talk is a major accomplishment in integration.

Add: More on testing in stages, more on throughput, more on schema and other validation issues. Consider collecting them all up, sending them all out and keeping the baseline of what was successfully tested as an archive. Can your systems “handle” the extremes you can predict? Developing a testing plan and process for your system. Finish with a check list of items to consider.

The flip side to developing a robust set of test messages is to continuously monitor your own from your production data system. This needs to occur both during internal testing and as a course of routine validation. You should consider implementing a monitoring function that provides at least a gross level of validation testing as your systems operate. This can range from rather simple gross rule checking
 to a complete suite of very detailed rules to ensure complete validation. It is likely you will want to monitor this both from inside your organization as well as from the outside. It is essential that your deployment support some kind of periodic file creation format in order for you to be in a position to enjoy the benefits of this type of monitoring.

Many communications organizations use both internal checking, and an external 3rd party monitoring service. This sort of thing is very suitable for ATIS as well. If you can present your data on a web site, an FTP site, or even an email format, then it is likely you can arrange for another party outside of your immediate deployment to look at the data and monitor, and test it. Such testing may be limited to validating the encoding rules rather than the message content, but with increased ITS deployment content testing is becoming available as well. Be sure to consider what you will do when things go wrong, who is called and whether they have the authority and technical insight to act. Some of these monitoring services are real time and offer continuous rapid response. Others deal with validating data in a batch mode with only periodic connections and summary reports of errors found. Still others offer little more than statistic- gathering functions and provide little in the way of quality monitoring. Investigate what the market can offer and make an informed choice. Be sure to also consider the security implications involved with arranging access to your data be any outside agency.

In developing your own internal monitoring, take a look at the SAEs FTP_ATIS tool. This is a simple utility that uses HTTP and FTP methods to get a remote file on a periodic basis and process it.
 While originally developed to translate legacy data feeds, it also makes a very good framework for a monitoring system. You can develop an XML style sheet to react to the data it obtains and thereby devise your own rules and reactions. You may want to carry this further and develop response programs that alert and inform others in your organization when certain messages or types of events occur. For example, one could easily develop a tool that, as a consequence of monitoring the message content, also checked for any event involving damage to a bridge and automatically informed the bridge engineer that an inspection may be needed. While not a testing event per se, this is the sort of automated system one can easily build and adopt when standard formats are used for messages. Another common use for these types of tools is to grab an archival copy of the data being produced for later use. Finally, consider placing the monitoring tool somewhat remote from the actual center and its immediate communications network. By judicious placement, the monitoring can also serve as an end-to-end verification that the communications links themselves are operational.

10.5
Maintaining a Baseline in a Deployed System

Now that you have invested the time to understand the testing of your system, and established a testing program with a baseline of suitable messages, what next? Well, presumably you and your prime intend to use this work in validating your major sub components and integrating your systems, but the value of your testing process extends far beyond that into the working lifecycle of your deployment. No matter how well planned or executed, any deployment changes and extends itself over time. Your suite of established test procedures is a major tool in managing this change as you move forward. You will find yourself pulling out old testing procedures when something new causes a break, so you can isolate and track down the change or some side effect. You will have a ready suite of procedures you can run as your regional coverage footprint grows. New centers and agencies currently on the edge of your deployment will receive a major benefit from your having a test process. And if you are making use of the standards themselves, then products developed in other locations will be reusable in your region with little additional work.

One of the steps you must continue to perform if you wish to realize these benefits, is to keep your baseline up to date. By this we mean keeping track of changes in various aspects of your systems, to the test suite or the various mapping and logical data linkages you have made, so they do not degrade over time. How will you move your baseline forward as the system is deployed? Loops and controllers change, maps change, road attributes changes, the coverage area changes as new regions are added.
 All of these are areas that need to be conveyed to the data-using community. Just because you know what is going on in the change, does the peer agency across town know? Does it affect your mutual aid agreements? Does it disable your archival data systems?
 When you reroute a roadside controller, does it change the link numbering values for others? Do you have a formal established way to notify each other when these changes occur? The key to managing this process is timely documentation, placed alongside the data itself to allow easy documentation to be maintained. And what about the deployment next door: what data will you be able to gain / share with them?

A complete testing program involves considering many issues besides simply testing the contents of the messages. The result is both a strong knowledge of the configuration baseline of the system, and a set of processes to investigate and validate when things go wrong. Each major component (and affected vendor) has a known yardstick to measure their performance in the system, and new concepts can be tried and measured with respect to the current system. The upfront cost of planning and developing such a test plan more than pays for itself over the life of the project.

These materials are released at this time for peer review comments by others in the ITS industry. Comments should be sent to: <davidkelley@itsware.net> This document is copyrighted 2003 by David Kelley and SubCarrier Systems Corporation (SCSC). This document represents an interim work for hire produced for the benefit of the Society of Automotive Engineers (SAE) in conjunction with their involvement with the DOT FHWA and the cooperative development agreement. All rights reserved.

For additional support, see the ITS discussion forum which can be found at: http://serv4.itsware.net/bb/index.php

� 	Costs from 5% to 10% of the program are often quoted in multi-vendor software integration projects, however integration as a whole (many persons consider testing a subset of this) can often be >30% of a project cost. In software packages adhering to well-known industry standards (which ITS may become but is not yet), there are often validation measures which the vendor can perform or submit to, that then allow product labelings as “compliant” in some form. Such testing is laudable and generally advances the quality of the product. But the buyer should also beware that the testing between products (i.e., exchanging such data) is often less well tested and should inquire in this regard.

� 	The book The Mythical Man Month, while a bit old, remains a good text to recommend for those wanting an overview on the perils of managing software creation and integration. Written by

Frederick P. Brooks in 1975 and published by Addison Wesley, there is an updated 2nd edition now available.

� 	Most committees also run web-based email list servers where technical issues such as this are discussed. SAE does for its ATIS Committees. See the support section for details of how to join.

� 	As covered in Chapter TBD, the three tier server architecture and other load balancing decisions may affect this. If serving ATIS data to the public is viewed in your center as a lesser requirement in times of limited system resources to that of serving the same data to peer agencies, then please review this section or further advice regarding separating the two functions to ensure satisfactory performance.

� 	Almost always such new content is optional in nature to preserve backward compatibility.

� 	In cases such as XML, the addition of a new message or new element in an old message is most often an optional element reflected in the XML schema, of which can be mindlessly parsed over by older deployments who do not understand how to use the new elements. These types of changes occur in the standard as a wider and wider deployment experience base is developed. Adding option elements such as the issuing agency to many messages is an example of this type of change.

� 	For example, the way events on lanes are described is now undergoing a harmonization process that will result in a single common format being used by all message set standards, but which also will obsolete the previously deployed way of doing things in ATIS. Such changes are generally the result of efforts to harmonize across ITS.

� 	As an example, users of XML style sheets can often reformat automatically between one content version or another. See the training examples and case studies on processing legacy data feeds to become compliant with standards for further examples of how this is done.

� 	It should also be mentioned that CORBA ORBS Rev 3, and newer, have a number of self-discovery features now available, that provide means for this type of system to discover updated messages and begin to use them without a regionally coordinated upgrade strategy. There is no analogous feature in DATEX.

� 	For example, you may choose in your deployment to only support 3 or 4 basic key messages, never to provide any information regarding fatalities, and never to issue clearance time estimates. Rules of this type profile the generic national message set into a sub-set to fit local deployment needs. The term sub ranging is also used in this context, when ITIS lists are restricted. Note that nothing mentioned here in any way affects the message set testing, in so far as any message meeting the above rules would also be 100% valid, from a national message set testing perspective. Hence, profiling should not prevent the use of national tools (although such tools are likely not to test the local restrictions without further work).

� 	This is expected to happen all the time. The standards were written in such a way that local messages could be developed and coexist with the local ones. Conceptually, such local extensions form the basis for further revisions to the national work as time goes by (and are not expected to be interoperable beyond the region until that time). Some have suggested, in ignorance, that any such local messages are somehow wrong or a reflection of inadequacy on the national standards. Such a point of view is entirely incorrect. Refer to Chapter XX for further examples of adding local list entries and using the "tail" data structures to convey such information in standard ways.

� 	Developed with a mindset to NTCIP device control extensions, but applicable here as well.

� 	These types of messages, being generally of the one-way information variety, can often be tested by inspection or with the same content validation tools used for other messages. When dialogs are involved or the messages are generated "as needed" the time delay to reply under a variety of loading conditions also becomes a key item to test.

� 	Add a footnote here illustrating that such tools are already beginning to be customized for the hardware side of ITS and cite the Trevilion Corp effort at creating a protocol conformance tool for NTCIP roadside devices as an example.

� 	That is, a GET request to a specific URL results in a sequence of bytes that can be viewed as a file from that location. If the returned bytes are derived in another way (say a VB script) it is not important. Often the same message set data files can return rendered HTML representations to create a web page.

� 	Depending on how the IDL is developed, CORBA system can be viewed in either this file transfer mode, or as an extended database system where only the changed information in a structure is transmitted. Both perspectives are valid and there is at this time no single or right ITS way of doing things. There is a growing trend in the Incident Management effort (IEEE 1512 et al) to use CORBA blobs of data to update inner XML utterances as monolithic objects.

� 	Such as a list entry you need to extend locally.

� 	Such as selected terms in lists or certain words in text, or optional parts of a specific message you chose not to support and send.

� 	Unless you happen to read ASN.1 often, which is not presumed here.

� 	It is strongly recommended that any ITS system developed today, be prepared to issue and to accept the full range of Latin_1 characters to remain interoperable with other telecommunications systems.

� 	Handle this with a requirement in your system specifications by establishing a list of characters that will not be issued by your system, and if received, will be processed and interpreted as a null character.

� 	As a rule, such systems simply pre-process such occurrences and send an exception code. This is "reversed" at the receiving end, but care must be taken to ensure that it has been performed before any string matching is done. For example, the "<" symbol is transmitted in XML as three characters: "<"

� 	For example, XML allows you to embed transmitted comments to document such messages.

� 	The correct answer, of course, is that you have called out a specific version of this and any other standard that you rely on in your design specification. This then gives a definite baseline from which you can manage change.

� 	Made up of the entire range of ITIS phrases, because there is not a range restrictions to a sub-set of values as often found in many of the TMDD uses when ITIS is broken down into smaller groupings.

� 	Use the Phrase Picker utility introduced in Chapter XX to explore valid ITIS codes if you wish.

� 	The obstruction list already contains such phrases as “herds of animals” and “animal on roadway,” so this placement makes some sense. We are using the format of XX,YY here where the XX is the upper byte value and YY is the lower byte value. To convert to a single number, multiply the upper byte value by 256 and add to the lower byte.

� 	In the convention of the ITIS lists, various "cancel" list items are numbered from 127 backwards.

� 	All the other sub ranges of the ITIS list would also be considered valid and would be unchanged from this addition.

� 	No animals were harmed in the writing of this standard.

� 	Because these lists are national in scope and constant in their numbering and meanings, many data users will preload them and modify them to fit needs of screen display, etc. Local deployments may modify them (adding entries or changing the displayed text for each) and provide them along with web pages, etc., but many users may not require or use this service. Therefore do not depend on changing the list phrases as a local way to change the meanings; rather adjust your shared operating practices to never issue the list item itself. Be sure to keep the ability to display such a phrase when sent by others.

� 	And once you have such a formatted mix it can also be used to test the bandwidth and response of your system under various loading conditions. Use the data you have assembled in varying amounts, sizes, and update rates to stress your network. You may also want to use this early data to test out and develop any HTML presentations of ATIS along a parallel development path rather than having to wait until the new deployment is farther along.

� 	This is done for simplicity rather than as a recommendation that XML be used.

� 	Note to reader: This message and the link message are used in the prior chapters frequently as examples for discussion and at this point need no further introduction. Also this is the unapproved current draft and when the balloted version comes out we will likely have to change this and a few other places.

� 	Observe that this XML does not refer to the schema being adopted in the new revision of the standard. Once balloted this link will be added as well as any ballot comment changes needed.

� 	To be supplied once the new version is adopted and the tools are changed.

� 	An interesting way to test the display aspects of your system are to inject various values (the data values are in kilometers per hour) and to see if the display will present common English values such as 25 or 55 MPH. From a standards point of view there is no "right" answer to this (the standards do no deal with display issues), but you may want to be sure that your public display results in such common values, rather than sending 89 KPH and seeing 55.302 MPH being shown.

� 	A related item is some form of system heartbeat monitor that will alert you if periodic expected data fails to be present when and where it is supposed to be. Alerts and traps of this type should result in someone getting out of bed at night to figure out what is going on. Plan for this in your organization and designate some luckless individual to be on call at all times.

� 	It may seem hard to believe, but a number of legacy systems exist today where the vendor does not support data dumping, providing only primitive serial data links and other rudimentary exporting from the internal data of the system. These deployments can only do the most rudimentary monitoring and are forced to go to extreme lengths even to do that. Don’t build/buy a system like this, you will not be happy.

� 	There are a number of commercial remote data grabber web tools for those that wish to build their own; many have a much richer feature set. The SAE tool is available for download at [link].

� 	This is particularly acute with issues of LRMS where any sort of indexing is used. Changes between agencies in their roadside equipment can easily result in data that become useless, because it cannot be geo-located to a common map datum.

� 	Consider having some form of meta data validation process just for the archival collection of information, so that you can connect your collected data to the precise circumstances under which it was collected months, if not years, after the fact. Look at the recommendations in the ADUS user guide for further insight into how to go about this.

PAGE
1
ATIS User Guide, Part IV Page

