
RELEASE 1.0

SAE ATIS GUIDE DOCUMENT

Part III of IV

A training document developed for the
OET program to teach the ATIS
message set standards

[image: image1.png]

Society of Automotive Engineers

400 Commonwealth Drive

Warrendale, PA 15096-0001

This Guide is available for download from the web in four parts at:

http://www.ITSware.net/ATISworkingdrafts/Guide/PartI.doc

http://www.ITSware.net/ATISworkingdrafts/Guide/PartII.doc

http://www.ITSware.net/ATISworkingdrafts/Guide/PartIII.doc

 HYPERLINK "http://www.ITSware.net/ATISworkingdrafts/Guide/PartIV.doc"

http://www.ITSware.net/ATISworkingdrafts/Guide/PartIV.doc

or as a single ZIP file at:

http://www.ITSware.net/ATISworkingdrafts/Guide/Guide.zip

Current technical support and information exchange about using the ATIS standards in deployment and with other ITS standards can be obtained at the ITS Standard Forum, a community resource available http://serv4.itsware.net/bb/index.php

There is a set of forums dedicated to ATIS related issues at:

http://serv4.itsware.net/bb/index.php?c=3

2Chapter Nine Specifying Local Systems Requirements to Best Use the Standard

29.1
Introduction

29.2
Translating Local Systems Needs and Requirements to Specifications

39.3
The Allowed point of expansion, the “…” keyword

49.4
Enumerated Lists with new local items

69.5
Enumerated Lists from ITIS

79.6
Enumerated Lists from ITIS, Adding New Categories

79.7
Adding additional data elements to a message

129.8
Adding additional data structures to a message

159.9
Adding additional messages

179.10
Dropping OPTIONAL Content within a message

9
Specifying Local Systems Requirements
to Best Use the Standard

9.1
Introduction

In this section we will cover the methodologies used to profile the ATIS message set standard for local use. This will include

· Adding additional items to lists and enumerations

· Adding data elements and more complex structures to a message

· Adding entirely new messages

· Restricting the use of items in lists

· Restricting the use of optional elements in messages

The text covers how to modify the ASN.1 and the XML to achieve this. Perhaps of greater importance is how to perform these local changes in ways that will not affect your ability to interoperate with others. While this document was written for deployments using the ATIS standard, the methods outlined here are expected to be, in general, uniformly applied by all the other message set standards. Examples have been taken from actual early deployments using the standards and reflect problems and the real world issues they had to overcome in deployment.

9.2
Translating Local Systems Needs and
Requirements to Specifications

Need to know what you need to know before you can begin this process.

Need to look at the messages which allow much flexibility to determine if you really need it. Ask, use the resources of the discussion board, etc., to see if others have overcome this problem before you.

If you need to add something, chances are the building blocks (the data elements at least) already exist and you are better off to use these than invent your own data elements. Again, ask around. There are ready mechanisms to plug the messages developed in one standard into that of another these days as well.

9.3
The Allowed point of expansion, the “…” keyword

Many times in the prior text the remark has been made that the messages, themselves, specifically allow places where local deployments are expected to be expanded and add additional types of content. This is marked as “…” in the ASN.1 listings and in some places also with the ASN.1 comment phrase: -- # LOCAL_CONTENT. These keywords have specific equivalent representations in the resulting XML schema files (and typically an entry in the local schema file as well). It is beyond the scope of this document to review the long and twisted history of how “…” came to imply “insert local content here” in the workings of ITS messages. The result of the story is that this keyword is used to inform an ASN.1 complier that additional structural content might be added at that point, at some later date, and serves as a warning not to be too clever in the way it constructs the resulting message at the moment.
 Its use is, in fact, not germane to any published (i.e. fixed and stable) ASN.1 listing because in a classical pure ASN.1 system, all parties (all data sources and data receivers) typically compile the ASN.1 listing and exchange beforehand a set of known encoding formats, and after that point no new information would be allowed to be added anyway. This is in contrast to the typical XML deployment, which may start with similar (if not exact) XML schema files among the partners but would typically independently compile them (potentially with local extensions and changes and in the presence of other local files) to produce a local embodiment.

It is reasonable to ask where, exactly, is the “…” used in the messages or in the lists of the standard? Typically you find this keyword placed at the very end of the message (just before a “}” most often) but it is not required to be there. The IncidentInformation data frame is a typical example in this regard. In more complex messages the keyword may appear multiple times in the same message, usually after every sequence of elements in the message. In such a case, you may insert local content at each of these points.
 The ManeuverInstruction message is an example of this. In this structure observe that you can expand the elements to add additional basic types of instructions to follow and also to add additional elements (at the end of the structure). It is important to note that the order of elements inside any given sequence is not really vital to how the message is processed or displayed in the recovering application.
 Thus, being only able to add elements “at the end” is not an issue.
 In the messages and data frames of the currently adopted standard the keyword -- # LOCAL_CONTENT also appears and this has resulted in final XML with local keywords suitable for expansion without requiring changes to the XML. The local file can be edited (or not) to handle all types of extensions.

In enumerated lists (which are simple data elements) the “…” term appears at the end of the list, again indicating that the list may be expanded. Following the conventions, local additions to the list start with a numeric value of 128 and proceed from there (129,130, etc.) while the range from zero up to 127 is reserved for the current items and any additional items to be added to the list in revisions of the national standard itself. In other words, a deployment adding the phrase “myItem” to any list would always number that item (presuming it was the first addition) as item 128. Unlike the style found in the data structures and messages of the adopted standard, the lists do not yet use the additional keyword -- # LOCAL_CONTENT and the produced XML in the current standard does not typically include a local keyword for expansion. This is expected to be corrected when the next revision to the standard is adopted, with lists then employing the same style used elsewhere. Today, as a result of this, you will have to edit the XML of many lists if you wish to expand them to add either the local keyword (a better choice from a style perspective) or to add your own local list items directly (a more efficient change in terms of labor). An exception to this is the collected lists of the ITIS phrases which already provides the local expansion. Examples of both styles will be given. Also, newer efforts producing XML standards by other SDOs provide the keyword now as well.

9.4
Enumerated Lists with new local items

As our first local example, let us consider the needs of a deployment who prefers to use UNIX-type systems and who feel the file types offered by the ExtendedInfoType element
 are not sufficient for its needs. The current definition of supported files is shown below and has a distinct DOS tone to it. Note the typical comment at the bottom of the entry about adding additional content.

ExtendedInfoType ::= ENUMERATED {

 anyTypeValidOnlyOnRequest (0),

 text (1),

 zip (2),

 mp3 (3),

 mpeg (4),

 jpg (5),

 tiff (6),

 html (7),

 xml (8),

 multiMedia (9),

 all (10), -- implies any format

 ... -- # LOCAL_CONTENT

 }

 -- values to 127 reserved for std use

 -- values 128 to 255 reserved for local use

When rendered into an XML schema (shown below) the “…” and -- # LOCAL_CONTENT do not result in any local keywords being added to this schema. Again, we expect to revise the XML of such entries in the next revision of the standard that is adopted. The fragment shown below has had the comment portions removed to shorten its length.

<xs:simpleType name="ExtendedInfoType" >

 <xs:union>

 <xs:simpleType>

 <xs:restriction base="xs:unsignedInt">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="10"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="anyTypeValidOnlyOnRequest"/>

 <xs:enumeration value="text"/>

 <xs:enumeration value="zip"/>

 <xs:enumeration value="mp3"/>

 <xs:enumeration value="mpeg"/>

 <xs:enumeration value="jpg"/>

 <xs:enumeration value="tiff"/>

 <xs:enumeration value="html"/>

 <xs:enumeration value="xml"/>

 <xs:enumeration value="multiMedia"/>

 <xs:enumeration value="all"/>

 </xs:restriction>

 </xs:simpleType >

 </xs:union>

</xs:simpleType>

Let us presume for the purposes of this example that the local deployment has determined that it wishes to support the file types
 of TAR GZIP and BZIP2 by adding the following four new extensions to the list: tar, gz, tgz, and bz2. These new items would be numbered from 128 to 131 and would be added directly to the ASN.1 by revising the listing as follows:

ExtendedInfoType ::= ENUMERATED {

 anyTypeValidOnlyOnRequest (0),

 text (1),

 zip (2),

 mp3 (3),

 mpeg (4),

 jpg (5),

 tiff (6),

 html (7),

 xml (8),

 multiMedia (9),

 all (10), -- implies any format

 tar (128), -- TAR files

 gz (129), -- GZIP Files

 tgz (130), -- TAR GZIP Files

 bz2 (131), -- Bzip2 Files

 ... -- # LOCAL_CONTENT

 }

 -- values to 127 reserved for std use

 -- values 128 to 255 reserved for local use

When the above is rendered into XML, the four new items appear in the list of phrases and the numeric range of allowed values has been adjusted to include the values as shown below. Take this fragment
 and use it in place of the former fragment in your local deployment schema and you are all set.

<xs:simpleType name="ExtendedInfoType" >

 <xs:union>

 <xs:simpleType>

 <xs:restriction base="xs:unsignedInt">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="131"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="anyTypeValidOnlyOnRequest"/>

 <xs:enumeration value="text"/>

 <xs:enumeration value="zip"/>

 <xs:enumeration value="mp3"/>

 <xs:enumeration value="mpeg"/>

 <xs:enumeration value="jpg"/>

 <xs:enumeration value="tiff"/>

 <xs:enumeration value="html"/>

 <xs:enumeration value="xml"/>

 <xs:enumeration value="multiMedia"/>

 <xs:enumeration value="all"/>

 <xs:enumeration value="tar"/>

 <xs:enumeration value="gz"/>

 <xs:enumeration value="tgz"/>

 <xs:enumeration value="bz2"/>

 </xs:restriction>

 </xs:simpleType >

 </xs:union>

</xs:simpleType>

This style of adding local content suffers from the fact that you are touching and manipulating the schemas of the standard directly. Two issues arise from this: first, you could introduce and break an otherwise well-formed schema by your actions; and second, there is no easy way to quickly tell “your” part of the schema from that of the national adopted schema. Also, it becomes labor intensive to move “your” changes to the next schema or deployment because, when a revised schema becomes available from the standards development process you must repeat the effort to integrate your changes into it all over again. By moving the parts you would edit into the local schema file, this is overcome and used in all the other methods of extensions we will cover.

9.5
Enumerated Lists from ITIS

The ITIS enumerations already have local insertion points present in them and adding new item content is much cleaner than the previous example.

Example case from AzDOT deployment, cite prior RDS use

9.6
Enumerated Lists from ITIS, Adding New Categories

Sometimes the actual categories of lists (sub lists) provided by the ITIS lists proves to be insufficient in some deployments when the types of information and centers involved extends beyond simple traffic related events in our post September 11th world. This is most often happening in deployments that are using the IEEE 1512 Incident Management standard to connect multiple centers, including police and other types of pubic safety. In such cases ATIS is used in these deployments as the preferred method of relating a summary of the event
 to outside media sources and, so, may be involved in relating event information for things such as police activity in greater detail than currently appears in the standard.

For example, today the state of Utah is constructing a system that uses both ATIS and the IM 1512 message set in conjunction with law enforcement users. They will likely add to the ITIS codes to reflect additional categorizations for local law enforcement needs (there are not any nationally accepted codes for this use, and this is an area where the Justice Dept and the DOT expect to cooperate on common message headers in the future).

9.7
Adding additional data elements to a message

The last three examples addressed adding items to enumerated lists in the different formats and styles needed by the standard. A much easier problem is adding an entirely new element to a message or data frame. In this case the use of the local keyword has resulted in expansion points in the local XML files that can be used.

Consider the case of a local deployment on the Pacific coast that wishes to use the WeatherInformation message to send out spot weather summaries for its local communities. The existing weather message is largely what is needed and allows a wide variety of information to be accommodated. It does not, however, allow the concept of “surf height,” a commonly expected local variable, to be sent.
 Adding this value to the message is the practical aspect of this example.

Looking at the lower portion of the WeatherInformation message we see the common ending elements of:

 furtherData URL-Link OPTIONAL,

 -- links to images, maps, or other data

 tail Tail OPTIONAL,

 ... -- # LOCAL_CONTENT

 }

The keyword LOCAL_CONTENT in this message results in the XML fragment shown below and is highlighted in bold. Recall that the name of the local keyword is derived from the name of the enclosing message and that the precursor local: indicates that the element can be found in the local XML namespace (which, in turn, is mapped to the local.xsd file).

 <xs:element name="furtherData" type="URL-Link" minOccurs="0"/>

 <!-- links to images, maps, or other data -->

 <xs:element name="tail" type="Tail" minOccurs="0"/>

 <xs:element
name="localWeatherInformation"

type="local:WeatherInformation" minOccurs="0"/>
 </xs:sequence>

</xs:complexType>

So, in actual use the definition of localWeatherInformation found in the local.xsd file of this message, it provides the definition for the surf height data element and then instances of that content can be inserted into the message itself.
 In other words, the definition above provides the following framework into which we can place the local content.

<!- Other elements preceding this one from the message -->

<localWeatherInformation>

<!-- Locally defined content starts here -->

</localWeatherInformation>

</WeatherInformation>

The local.xsd file itself, in its unmodified form, contains the following lines that relate to this message:

<xs:complexType name="WeatherInformation">

<xs:sequence>

<xs:element name="insert-local-information-elements-here"

type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

And in theory (but hopefully not in any actual practice) a valid instance of this XML would be as follows:

<localWeatherInformation>

<insert-local-information-elements-here>

Any string one wanted to place here

</insert-local-information-elements-here>

</localWeatherInformation>

</WeatherInformation>

A definition that meets our local needs for adding a surf height element might be encoded as follows using inches as the unit of measure and presuming 10 feet as an upper bound.
 This fragment would be placed into the deployment’s copy of the local.xsd file (replacing the stub that is there now).

<xs:complexType name="WeatherInformation" >

 <xs:sequence>

 <xs:element name="surfHeight" >

 <xs:simpleType>

 <xs:restriction base="xs:unsignedByte">

 <xs:maxInclusive value="120"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <!-- Units of inches -->

 </xs:sequence>

</xs:complexType>

But in actual order of production, the following fragment of ASN.1 was created first in the Mini-Edit tool and then it was used to produce the above XML. Notice that this ASN.1 is largely pro forma in nature, and only the single line with the actual INTEGER in it required any thought at all.

WeatherInformation ::= SEQUENCE {

 surfHeight INTEGER (0..120) -- Units of inches

 }

Once this is done, valid instances of the XML can be produced with the new local element present, such as the following:

<localWeatherInformation>

<surfHeight> 60 </surfHeight>

</localWeatherInformation>

</WeatherInformation>

It is important to observe that this modification was accommodated entirely by simple changes to the local.xsd file and that the ATIS schema file itself remained untouched. Further, observe that any receiver device that does not understand the content model adopted by the local deployment can still recover and process this message by simply skipping over the information found inside the <localWeatherInformation> tags.

A more complex example of adding additional local elements.

The state of Utah runs a very nice XML-based data feed of current incidents in and around the greater Salt Lake area.
 This data feed was developed before the completion of the ATIS standard and now, as they merge and exchange data with their neighbors to the south, they wish to modify it to use the standard as a common point for data exchange. One of the curious aspects of this message set is that it always presents a count of types of involved vehicles for every event. One of these types of vehicles is that of “motorhome vehicles,” a category that is commonly involved in incidents in this tourist-driven community. There is no category for this type of vehicle in the ITIS vehicle categories or in the ATIS event message of the message set, so it must be added as a local variable and then used to extend the event message to provide a count of the number of RVs involved.

A typical fragment of the Utah message in XML looks like the following. Observe that there are seven types of vehicles that are ALWAYS reported in the message structure, even when the number of these vehicles is zero. The current message feed does not employ a formal schema to describe its formatting constraints, which is typical of most early XML users.

 <event>

 <event_id>1661746</event_id>

 <event_type>accident</event_type>

 <event_level>minor</event_level>

 <event_impact>high</event_impact>

 <description>accident on SB INTERSTATE 15 AT 3900 S</description>

 <location>

 <primary_road>Interstate 15</primary_road>

 <direction>southbound</direction>

 <secondary>3900 south</secondary>

 <city_name></city_name>

 <county_name>Salt Lake</county_name>

 <geolocation>

 <type>lat long</type>

 <zone/>

 <x>-111.905242</x>

 <y>40.687046</y>

 </geolocation>

 </location>

 <injury_count>1</injury_count>

 <fire_presence>0</fire_presence>

 <hazmat_presence>0</hazmat_presence>

 <hazard_presence>0</hazard_presence>

 <railroad_count>0</railroad_count>

 <pedestrian_count>0</pedestrian_count>

 <light_truck_count>0</light_truck_count>

 <pickup_van_count>0</pickup_van_count>

 <tractor_trailer_count>0</tractor_trailer_count>

 <motorcycle_count>0</motorcycle_count>

 <motorhome_count>0</motorhome_count>

 <automobile_count>1</automobile_count>

 <other_vehicle_count>0</other_vehicle_count>

 <num_affected_lanes>1</num_affected_lanes>

 <location_type>freeway</location_type>

 <affected_lane_type>left lanes</affected_lane_type>

 <confirmed>Mon Sep 15 16:22:19 MDT 2003</confirmed>

 <estimated_end>Mon Sep 15 16:52:09 MDT 2003</estimated_end>

 <reporting_agency>UDOT</reporting_agency>

 </event>

By contrast, the ATIS event message allows up to 16 different vehicle types (each with a numeric value representing the count in that category) to be sent in any instances of the message. This part of the message is shown below. It would be typical not to send those types where the value is zero, but the structure of the schema does not prevent this and this deployment might choose to do so to preserve the greatest backwards compatibility.

EventInformation ::= SEQUENCE {

 -- portions of the message removed for brevity --

 vehiclesInvolvedCount TMDD.Event-incident-vehicles-involved-count OPTIONAL,

 -- the number of vehicles

 types SEQUENCE (SIZE(1..16)) OF VehiclesInvolved OPTIONAL,

 -- the types of vehicles and a count of each

 -- portions of the message removed for brevity --

and:

VehiclesInvolved ::= SEQUENCE {

 type ITIS.VehicleGroupAffected,

 count INTEGER (1..255),

 ...

 }

A valid fragment of the ATIS event message showing several involved vehicles
 would look like the following.

<EventInformation>

<!-- portions of the message removed for brevity -->

 <vehiclesInvolvedCount> 10
</vehiclesInvolvedCount>

 <types>

<type>

<type>
cars
</type>

<count>
3

</count>

</type>

<type>

<type>
trucks
</type>

<count>
3

</count>

</type>

<type>

<type>
school buses
</type>

<count>
2

</count>

</type>

<type>

<type>
bicycles

</type>

<count>
2

</count>

</type>

 </types>

<!-- portions of the message removed for brevity -->

The ITIS VehicleGroupAffected contains in it the following 35 types, of which RVs is not one.

VehicleGroupAffected ::= ITIScodes (9216..9471)

	abnormal loads
	all vehicles

	articulated buses
	bicycles

	buses
	cars

	cars and light vehicles
	cars with recreational trailers

	cars with trailers
	convoys

	delivery vehicles
	diesel powered vehicles

	exceptional loads
	gas powered vehicles

	hazardous loads
	heavy vehicles

	high profile vehicles
	light vehicles

	long vehicles
	LPG vehicles

	maintenance vehicles
	military convoys

	military vehicles
	motorcycles

	school buses
	trucks

	vehicles with catalytic converters
	vehicles with double trailers

	vehicles with even numbered license plates
	vehicles with odd numbered license plates

	vehicles with parking permits
	vehicles with semi-trailers

	vehicles with trailers
	vehicles without catalytic converters

	wide vehicles
	

The Utah deployment uses the categories shown in the table below at left, while analogous ITIS categories are shown at right. Typically establishing this type of table involves local focus groups between effected users to determine or revise operating procedures as joint understanding is established .

UTAH Term
ITIS Term
Comments

light_truck_count
trucks
pickup_van_count
heavy vehicles
This category seems to be a poor fit
tractor_trailer_count
vehicles with trailers
motorcycle_count
motorcycles
motorhome_count
None Suitable
Add as “recreational vehicles”
automobile_count
cars
other_vehicle_count
all vehicles
Used for all other classifications

The problem then reduces to locally adding the new data concept of a “recreational vehicles” to the ITIS group VehicleGroupAffected so that the counts of this type of vehicle class can be expressed in the message. This is simply another example of adding a local phrase to the ITIS codes.

Adding this phrase to the ITIS codes is handled by adding the following lines to the local.xsd file following the same steps as outlined in the previous example:

Local fragment

Once this is done, instances may use this code value so fragments like the following become valid in the local deployment:

<EventInformation>

<!-- portions of the message removed for brevity -->

 <vehiclesInvolvedCount> 3
</vehiclesInvolvedCount>

 <types>

<type>

<type>
cars
</type>

<count>
1

</count>

</type>

<type>

<type>
trucks
</type>

<count>
1

</count>

</type>

<type>

<type>
recreational vehicles
</type>

<count>
1

</count>

</type>

 </types>

<!-- portions of the message removed for brevity -->

Observe that this local enchantment seemed at first blush to require changes or additions in the data elements of the messages, but upon further examination could be expressed in the existing standard by relatively simple changes in the phrases of the ITIS codes. Notice also that the schema of the ATIS standard was not modified in this process.

9.8
Adding additional data structures to a message

The example of adding a surf height element to the weather message demonstrated adding a simple atomic data element. How is the process different if you need to add a more complex structure or group of elements? Fundamentally it is the same, you simply modify the local.xsd file to allow the new structures to be expressed in the target message.

Consider the needs of an eastern state that is merging multiple legacy systems together using ATIS as part of an incident management exchange system, and who wants to relate work-zone messages to others including the traveling public. In the IM formation of the work zone message type, it uses the basic ATIS EventInformation message to hold the “public” information while wrapping it with additional “private” information about the resources being used and other information shared only between centers.
 The ATIS EventInformation message does not include a simple way to provide an agency point of contact and a phone number, which we will add here using a data frame structure. The other data elements are all used in the normal manner, for example the further information element will be used to point to web-based resources that provide current and real-time information about the event, such as quickly changing daily schedules and live camera images. The additional individual data elements of information to be sent can readily be found in existing data dictionary work and can be assembled into a short data frame as follows:

PointOfContact ::= SEQUENCE {

 name IM.PersonName OPTIONAL,

 -- the full name of the person

 title ATIS.FreeText OPTIONAL,

 -- the title or role of the person

 agency TMDD.Organization-name,

 -- the agency to contact

 phones SEQUENCE (SIZE(1..4)) OF ATIS.PhoneInformation,

 ... -- # LOCAL_CONTENT

 }

The above data creates a useful (and re-usable) data frame, rather than simply inserting the individual data elements in the local stub. Because this information is intended to be used in and by the public, additional data items such as the agency’s assigned ID values or the type of agency, were not chosen to be present. Some other deployments might have chosen a different set of elements, or different names for the instances of each element. The judicious use of the OPTIONAL keyword can usually be employed to find common ground at such times.

Notice that the … -- # LOCAL_CONTENT keywords have been used here to provide the local deployment the same opportunity for later expansion found in the actual standard. There is no prohibition against doing this, however its practical value is limited because you would be changing the same schema file to add new content.

Note that every item in the above data-frame has been taken from other data dictionary efforts, using both simple and complex entries as best suits the need. This is most often the case because, with >6000 such elements there is rarely a need to invent a new one. Note that every type is preceded by a module namespace (ATIS, TMDD, etc.) indicating where the type is to come from. This fragment of code itself would be in the local file and therefore reside in the LOCAL namespace.

The XML that results from the above is easily created either by hand or with Mini-Edit and is shown below:

<xs:complexType name="PointOfContact" >

 <xs:sequence>

 <xs:element name="name" type="im:PersonName" minOccurs="0"/>

 <!-- the full name of the person -->

 <xs:element name="title" type="atis:FreeText" minOccurs="0"/>

 <!-- the title or role of the person -->

 <xs:element name="agency" type="tmdd:Organization-name" />

 <!-- the agency to contact -->

 <xs:element name="phones" >

 <xs:complexType>

 <xs:sequence minOccurs="1" maxOccurs="4">

 <xs:element name="phone" type="atis:PhoneInformation" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="localPointOfContact"

type="local:PointOfContact" minOccurs="0"/>

 </xs:sequence>

</xs:complexType>
This structure now needs to be added to the event message and we do this by modifying the local stub provided for that entry as follows. The ASN becomes

EventInformation ::= SEQUENCE {

 pointOfContact PointOfContact

 }

Resulting in the XML of:

<xs:complexType name="EventInformation" >

 <xs:sequence>

 <xs:element name="pointOfContact" type="PointOfContact" />

 </xs:sequence>

</xs:complexType>

And an instance of the ATIS EventInformation message using this additional content would look like:

<EventInformation>

<head> Skipped to save space </head>

<location> Skipped to save space </location>

<typeEvent>

<Roadwork>paving operations</Roadwork> </typeEvent>

<severity> minor </severity>

<status> confirmed report </status>

<description>

 <ITIS> paving operations </ITIS>

 <ITIS> stop and go traffic </ITIS>

 <text> between First Ave and Fourth Street </text>

 <text> expected until the end of the month </text>

</description>

<furtherData> a url link to cameras here </furtherData>

<localEventInformation>

<pointOfContact>

<name>

<honorific> Dr. <honorific>

<firstName> Joe <firstName>

<lastName> Blow <lastName>

</name>

<title> Head honcho </title>

<agency> Joe’s Midnight Paving Company </agency>

<phones>

<phone>

<use> main </use>

<number> 555-123-4567 </number>

</phone>

<phone>

<use> cell </use>

<number> 555-890-4567 </number>

</phone>

</phones>

</pointOfContact>
</localEventInformation>

</EventInformation>

As a side comment: the resulting local data frame should be forwarded with a note to the ATIS committee informing them of what was done so that they can consider the merits of adding this improvement to future versions of the standard in order to benefit all users.

9.9
Adding additional messages

The methods of extension used in the last few examples can be used anywhere the LOCAL_CONTENT keyword appears in the standard.
 This can be extended all the way to adding new messages inside the form and format of the ATIS schema when needed. In this example we will add an entirely new message to the schema to add functionality. The only caution the committee would provide in this regard is that this ability should not be used to create entities which circumvent the defined messages themselves.

Consider a deployment of the ATIS message set who supports primarily the delivery of roadway events to mobile users in automobiles. Such a service might be delivered over the DSRC channel, although that aspect of the system is not important to this example. Such users are typically equipped with a GPS positioning system with which to determine their current position. All such GPS systems are prone to local errors in the determined position measurement which can be largely eliminated by employing a technique called differential corrections. In order to employ this method, a set of messages with the differential measurement information must be delivered to each GPS unit every ~15 seconds or so. These measurements are broadcast in nature, that is, all GPS sets in a local area receive and use the same messages. The format for this message is a well established industry standard called RTCM SC 104 consisting of simple ASCII strings. Sets of these messages are in turn wrapped up into a suitable container message in the work of the IEEE Incident Management Message set where it is called the DifferentialGPSCorrections message. In this example we will add the ability to send this additional new message within, and as a part of, the ATIS message set.

The most proper place to insert a new message of this kind is along side the other major message types of the standard in the ResponseGroup data frame. This DF is the primary structure used to gather and send sets of related messages (sets of traffic events, sets of weather reports, set of any other sort of periodic data). Inserting here makes much more sense than adding the message “outside” the framework of the InformationRequest and InformationResponse request-reply dialog flow which the standard uses. And, in keeping with conformance to the adopted standard, if a specific end user receiver did not understand the content of this periodically occurring message, it would simply skip over it when processing the recovered data. If we examine the ResponseGroup DF we see it is defined as shown below with the normal keywords at the bottom:

ResponseGroup ::= SEQUENCE {

 head Head OPTIONAL, -- basic meta data for the whole group

 coverageArea LRMS.LocationReference OPTIONAL,

 weatherReports SEQUENCE (SIZE(1..100)) OF WeatherInformation OPTIONAL,

 links SEQUENCE (SIZE(1..100)) OF LinkTrafficInformation OPTIONAL,

 incidents SEQUENCE (SIZE(1..100)) OF IncidentInformation OPTIONAL,

 events SEQUENCE (SIZE(1..100)) OF EventInformation OPTIONAL,

 flights SEQUENCE (SIZE(1..100)) OF AirlineTravelInformation OPTIONAL,

 routes SEQUENCE (SIZE(1..100)) OF Route OPTIONAL,

 itineraries SEQUENCE (SIZE(1..100)) OF Itinerary OPTIONAL,

 detours SEQUENCE (SIZE(1..100)) OF Route OPTIONAL,

 detourItineraries SEQUENCE (SIZE(1..100)) OF Itinerary OPTIONAL,

 parkingLots SEQUENCE (SIZE(1..100)) OF ParkingLotInformation OPTIONAL,

 furtherData URL-Link OPTIONAL,

 tail Tail OPTIONAL,

 ... -- # LOCAL_CONTENT

 }

As before, we would extend this by revising the entry for it in the local.xsd file to become as shown below. Note that a sequence and a limit have been used to follow the style of the rest of the document. The maximum value of 100 was used, but it should be noted this value was simply an arbitrary choice by the committee in order to limit the size of the message. The keyword -- # UNTAGGED was also used
 in this example to remove occurrences of an outer tag that would have otherwise been present.

ResponseGroup ::= SEQUENCE {

 gpsCorrections SEQUENCE (SIZE(1..100)) OF

 IM.DifferentialGPSCorrections

 OPTIONAL -- # UNTAGGED

 }

And this would result in the XML schema fragment of :

<xs:complexType name="ResponseGroup" >

 <xs:sequence>

 <xs:element name="gpsCorrections"

type="im:DifferentialGPSCorrections"

minOccurs="0" maxOccurs="100" />

 </xs:sequence>

</xs:complexType>
A valid instance of a message fragment with this then becomes:

XML frag here

Observe again that considerable flexibility is present without having to edit the ATIS schema file and that use of the content found in other standards can often be employed for data reuse and a considerable savings in effort when making local changes.

9.10
Dropping OPTIONAL Content within a message

At this time there is not a uniformly accepted way to do this within the ITS standards. You can of course re-create the schema sets you use from the national standard replacing any optional (min occurs = 0) statements with mandatory statements as needed to reflect the local requirements. This is not entirely ideal, because you will end up validating the conformant message twice, once against the more admissive national standard and once against your own local rules. At the same time, a fundamental rule of message exchanges to is be able to successfully accept a well formed message from another source which may contain information you do not or can not process. The need to accommodate this requirement generally prohibits creating more restrictive sub-schema designs without the optional content being present.

These materials are released at this time for peer review comments by others in the ITS industry. Comments should be sent to: <davidkelley@itsware.net> This document is copyrighted 2004 by David Kelley and SubCarrier Systems Corporation (SCSC). This document represents an interim work for hire produced for the benefit of the Society of Automotive Engineers (SAE) in conjunction with their involvement with the DOT FHWA and the cooperative development agreement. All rights reserved or assigned to the SAE.

� 	ASN.1 encodings for transmission over the wire (as opposed to simply abstract syntax definitions) employ a number of techniques to remove the entropy present in the message body and reduce the size of the actual transmitted bits. Some of these (particularly the PER encoding rules) can result in highly efficient forms that more or less “break” backward compatibility if additional content is added later. For this reason the “…” keyword was first added to the syntax of ASN.1 itself as literal shorthand for “...but wait, there is more.” In the development of standards, ASN.1 users quickly found this keyword to be a useful way to denote places that the committee expected to come back to and develop further in the never- ending process of creating the perfect consensus-based message. In this use of the keyword, ITS is certainly not alone.

� 	Such a message will result in multiple local keywords inserted into the final XML.

� 	With simple style sheets you can re-order and process the objects in any order you desire. Unless you are using some types of sequentially event orientated processing software, the entire message will have arrived at your receiver point, correctly, before your processing code is invoked to deal with any of it, so there is no saving in this regard.

� 	Because of the processing rules we have adopted between ASN.1 and XML, the ordering of ASN.1 elements is carried over to the order of XML elements. Said another way, the “any” keyword of XML is never used in messages of ITS standards, and you can rely on the order of the elements to be preserved in the arrival sequence of the message if your application needs to do this.

� 	The current adopted ATIS standard, as the very first standard to publish a complete XML schema, was not able to take full advantage of the all the tools the SAE has now developed in producing schemas.

� 	The ExtendedInfoType element is used in the DirectoryExtendedInformationRequest message to control the type of files that can be returned, to ensure that only the files type receiver (data consumer) can handle what would be sent by the data source.

� 	These are common file types found in the Unix world. TAR is a multi-file collection of uncompressed files. GZIP is the original UNIX ZIP format. Commonly, tar files are compressed using gzip and given the extension tgz. Files that have been compressed by the newer bzip2 algorithm will have a .bz2 extension.

A file that is compressed with gzip is compatible with WinZip and PkZip. A file zipped on a UNIX system can be unzipped with a Windows system.

� 	The most practical way to do this is to obtain a copy of the free Mini-Edit tool (discussed elsewhere) and the ATIS database, and then add these items to the existing ASN.1 listing followed by having the tool produce a new XML listing for you.

� 	Again, the <xs:appinfo> tag information was removed to save listing space.

� 	All the basic ATIS messages are now included in the IM work by reference and the recommended way of providing a summary of an event to others is to issue an ATIS event message with the normal details.

� 	We consider here only the case of a deployment using XML as its message encoding style. If you wanted to go back and use the original ASN.1 source code (as might be done if you were going to use ASN.1 encoding rules and tools (BER, OER, PER , etc.) for your encoding level) then you would need to change the ASN.1 directly in a manor similar to the first example. Here, there is no need to ever edit or touch the actual message definition in the standard, this preserves your ability to migrate to revisions of the standard with less effort and also makes validation and acceptance testing easier.

� 	Surf height is printed in the local papers and is, in general, given (to non-surfers) in terms of feet and inches of average height. When catering to the needs of surfing enthusiasts, a much more complex summary of the surf conditions is typically provided including details of wave shape and variability, see � HYPERLINK "http://www.beach.com/surfrider/water.asp" ��http://www.beach.com/surfrider/water.asp� for a typical example of such a report.

� 	Looking ahead just a bit to the next section, notice that there is no way to tell if the contents defined by the local file are simple or complex at this point and in fact they can be either.

� 	A style sheet can be used to trivially convert this to units of feet and inches if desired for display.

� 	A planned future improvement of the tool will be to examine the usage of the LOCAL_CONTENT keyword and to automatically create empty stubs for your use in the management of these local extensions. Today you must perform this step manually.

� 	In fact, this same data feed is used in a rather nice subscription-based service where the user can subscribe to obtain short summaries of current events such as “There is a crash on Southbound I-15 at 9000 South. 2 left lanes are closed. Use caution” delivered to email clients every day. Look for “alerts” at � HYPERLINK "http://www.utahcommuterlink.com" ��http://www.utahcommuterlink.com� for further details.

� 	Adding the new category “recreational vehicles” to the ITIS category VehicleGroupAffected has been forwarded to the ATIS committee (the keeper of the ITIS codes) for their consideration.

� 	Note the duplicate tags <type> in this fragment. A few instances of this exists in the current adopted standard and they are expected to be slightly renamed in the next revision. Style sheets should use complete paths to tags to avoid any possibility of incorrect tag selection resulting from this.

� 	Several ways are provided in the IM effort to relate to one or more specific persons and job functions to the performance of the event. The interested reader can refer to the thread at � HYPERLINK "http://serv4.itsware.net/phpbb2/viewtopic.php?t=68" ��http://serv4.itsware.net/phpbb2/viewtopic.php?t=68� for additional information.

� 	It is also possible that the local schema file points to (brings in) additional schema content from files developed elsewhere. There is no issue with doing this as long as all sources properly resolve.

� 	Therefore, any references to local types would not require to be preceded by the LOCAL keyword.

� 	In this example we are only adding one element to the local entry, an instance of the PointOfContact data frame we have defined in the local file. If multiple items were wanted, an enclosing sequence could be used to hold them. This can often be the case when different objectives are trying to all be met with the same message. In such a case the additional items needed by each use case are added, perhaps with a switch statement, or with a sequence and liberal use of the optional keyword. Also, note that if another message is also needed to use the PointOfContact data frame, it could be instanced into other places as well (typically with a single line like that in the local event use).

� 	And where they do not, you can create entirely separate and new message in the local schema or in any other schema file you wish (in which case you will probably want to bring such a file into the “family” of your deployment by adding it to the module and namespaces called out in the local file. This would be the best way to add a large body of work, such as another standard outside ITS that you wished to use.

� 	This is just an XML control feature of the Mini-Edit tool and is used to control the conversion from ASN.1 to XML in the tool.

PAGE
1
ATIS User Guide, Part III Page

